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The problem of the existence of local one-parameter families of periodic motions (Lyapunov families) adjoining the position of 
equilibrium of reversible systems is investigated. In the most general situation, an analogue of the well-known Lyapunov theory 
is obtained. The bifurcation of the Lyapunov families when a pair of roots of the characteristic equation passes through zero is 
analysed. In particular, it is shown that, with this scenario, in the non-degenerate case the zero values of the roots are fatal for 
Lyapunov families. The effect of a "non-hoionomic constraint" is investigated. Periodic motions, close to permanent rotations 
about a vertical, for heavy homogeneous ellipsoid on an absolutely rough plane, are analysed in an appendix. © 2000 Elsevier 
Science Ltd. All fights reserved. 

1. L Y A P U N O V  F A M I L I E S  O F  P E R I O D I C  M O T I O N S  

Consider the pha,;e portrait for the mathematical pendulum x + sin x = 0. The presence of a sign- 
definitive energy integral x2/2 - cos x = h (h = const) in the neighbourhood of the zero equilibrium 
position enables us to establish the existence in this neighbourhood of a one-parameter Lyapunov family 
of closed trajectories---periodic motions. Here, the family can be parametrized either by the energy 
constant h, or by the amplitude of periodic motion at the instant it intersects the x axis (:t axis), or by 
the period of the :motion. The sign-definiteness of the integral is established by the quadratic term in 
the expansion of the potential energy -cos x, which corresponds to a pair of pure imaginary roots of 
the first approximation equation J? + x = 0. 

It is not difficult to see that the solutions of the Lyapunov family are symmetrical both about the x 
axis and about the x axis. Furthermore, the requirement concerning the presence of an integral is not 
necessary for a Lyapunov family to exist. When there is a pair of pure imaginary roots, the angle on 
the trajectory in a fairly close neighbourhood of equilibrium changes monotonically. This ensures double 
intersection by the trajectory of the x axis (x axis). Therefore, provided the phase portrait is symmetrical 
about the x axis orx axis, from this we quickly deduce the existence of a Lyapunov family. In particular, 
such a situation occurs in a reversible system with one degree of freedom. 

x'" + to2x = F(x, x'), to = const 

with non-linear terms F(x, x) in each of the cases: (a) F (x, -:t) = F (x, 2); (b) F (-x, x) = -F(x,  ~c). In 
the first of them, the trajectories of the Lyapunov family are symmetrical about the x axis, and in the 
second they are symmetrical about the x axis; symmetry about both axes is now not guaranteed. 

Thus, for a Lyapunov family to exist it is sufficient to require either the existence of an integral of the 
phase portrait symmetry to occur (the presence of a pair of pure imaginary roots is obligatory). Therefore, 
the theory of Lyapunov families of periodic motions is developed for systems allowing of the first integral 
(Lyapunov systems) and for systems possessing phase portrait symmetry (reversible systems). 

2. THE L Y A P U N O V - B R Y U N O - D E V A N E Y  T H E O R E M  

Let us consider the problem of the existence of local periodic motions of a smooth reversible system 

u" -- Av + U (u, v), v" = Bu + V (u, v); u¢ R t, v¢ R" (I ~ n) 

U(O, O) = O, V(O, O) = O, U(u , -v )  = -U(u ,  v), V ( u , - v )  = V(u, v) 
(2.1) 

(where A and B are constant matrices, and U and V are non-linear terms) with the fixed points set 
M = {u.v: v = OL 
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Fig. 1. 

Theorem 1.(Lyapunov-Bryuno-Devaney). Suppose that: (a) the characteristic equation of the linear 
part of system (2.1) has a pair of ___ito pure imaginary roots; (b) among the other roots of this equation 
there is none equal to +_ipto (1o ~ N); (c) rank B = n. Then system (2.1) has an ( l -  n)-parameter manifold 
of equilibrium positions, belonging to the fixed points set M and containing zero equilibrium, and each 
point of this manifold has an adjoining one-parameter family of Lyapunov periodic motions. 

This formulation refines the corresponding previous assertion in [1]. When investigating the case 
l = n [2, 3], condition c was replaced with the stronger condition that there are no zero roots. Obviously, 
when l = n there are no zero roots if rank A = rank B = n. However, if rank A = n - k, and rank B = 
n, then there are k pairs of zero roots. However, the theorem remains valid in this case. 

According to Theorem 1, when I = n = 1, a singular point in the (u, v) plane is the centre. When 
l > n = 1, the space (u, v) consists of an ( l -  1)-parameter manifold of equilibrium positions, each point 
of which has an adjoining Lyapunov family; there are no other local solutions. 

The proof of Theorem 1 will be anticipated by a lemma. 

Lemma 1. In the case when rank B = n, system (2.1), by a non-singular linear transformation, can 
be reduce to the form 

~ ' = P y + ~ ( ~ , x , y ) ,  x ' = J y + X ( ~ , x , y ) ,  y ' = x + Y ( ~ , x , y ) ,  
(2.2) 

~e R I-", x, ye R" 

(where ~,, X, Y are non-linear terms) with a real Jordan matrix J with real eigenvalues 2V2,..., ~2 and 
the fixed points set M, = {~, x, y: y = 0}. 

Proof. We shall write the first approximat ion equations in (2.1) in the form 

u; =&v, u~=A2v, v'= Blul +n2u2 
uleR t-n, u2 E R n, det B2~0 

and, instead of  u2, select a new variable B2u2 + Blul.  Then ~, = u2. Further ,  we make the transformation 

x = C-tu2, y =  C-'Iv (det C ~ 0) 

We have 

U: = AICy, x" = C-IA2Cy, y" = x 

It  can be seen that the characteristic equat ion of  this system has 1 - n simple zero roots. The remaining roots 
2 2 -+~. are de te rmined  from a polynomial  of o rder  n in ~.. Here,  ~. are real numbers  and they. coincide with the 

eigenvalues ~.21 . . . .  , k 2  of the matrix C-1A2C. The selection of the matrix C from the condition C-1A2C = J completes 
the proof. 

Proof of Theorem 1. By virtue of the oddness of the functions ~ (~, x, 0), X (~, x, y) with respect to 
the variable y, we have _ (~, x, 0) --- 0, X (~, x, 0) - 0. Therefore, system (2.2) admits of the constant 
solution ~ = ~0, x = x ° (~0), y = 0, determined from the equation 

xo + y (~o, x o, 0) = o 
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As a result, we have an (1 - n)-parametric manifold of equilibrium positions ( f r o m  ~0) belonging to 
fixed points set M* and containing zero equilibrium ~ = 0, x = 0, y = 0. 

Now, by making the replacement (~, x, y) ---> (~, Ixx, try), we reduce system (2.2) to the 
form 

~" = ixPy + ixX, (Ix, ~, x, y) 

x' = Jy + ixX, (ILl,, ~, X, y) 

y" = x + ixY, (ix, ~,x, y) 

(2.3) 

Hence, when IX = 0, we obtain the linear generating system 

~" = O, x '  = J y ,  y" = x ( 2 . 4 )  

From the final equation in (2.4) it can be seen that the zero root Z, = 0 in the subsystem for x, y, if 
such exists, does not lead to a periodic solution. Therefore, when there is a pair of pure imaginary roots 
kl = - i to  and the remaining roots ks ~ +-_ipto (p ~ [N), system (2.4) admits of a unique, from (~*, 41), 
family of 2n/to-periodic solutions 

= ~*, xl = a j  t r i o s  tot,  Yl = a l s i n  tot,  x2 = . . . .  xn = Y2 = . . . .  Yn -- 0 ( 2 . 5 )  

As al ---> 0, we have (~, x, y) ---> (~*, 0, 0), and solution (2.5) is shrinked to a point belonging to the 
manifold of equilibrium positions. Therefore, family (2.5) depends on the single important parameter 
al and adjoins the equilibrium (~*, 0, 0). 

On an arbitrary symmetrical solution of system (2.4) we have 

4 

Yl =alsintot ,  Ys = ~, aj~sj(t), aj -cons t ,  ys j ( - t )=-~s j ( t ) ,  s , j =  2 .....  n 
j=2 

and here det I I ~sj(rt/0)) I I ¢ 0 by virtue of the uniqueness of family (2.5). Therefore, by the theorem 
of continuation with respect to the parameter of the symmetrical periodic solution of an autonomous 
reversible system [1, 4], we deduce the existence in (2.3), for sufficiently small IX ~ 0, of a family, from 
(~*, a 0, of symmetrical T(I.t)-periodic solutions, T(0) = 2n/to, originating from solutions (2.5). Then, 
taking into account the form of the transformation of system (2.2) to system (2.3), we establish, for a 
fixed value oral ,  for example for al = 1, the existence in (2.2) of a family, from I1, of symmetrical TOt )- 
periodic solutions 

i1 = ~* + o(ix), xl = Ixtoeos tot + o (IX), y l  = ix sin m t +  o(ix) 

x2 = o(ix) ..... x. = o (ix), y2 = o(ix) ..... y~ = o (ix) 

adjoining the equilibrium (~*, 0, 0). 
Thc proof of Theorem i is complete. 

Example 1. The equations of motion of the three-body problem [5] 

BW OW 
x "  - 2 y "  =-~--, y -  + 2 x "  = 

b ,  

W= 1-11+ I~ , ri a --(x+IX)2+y 2, 
vi v2 

r22 = (x+bt_l)2 +y2 
(2.6) 

describe a conservative system with two degrees of freedom and at the same time are reversible with the fixed 
points set {x, y, .~, j, : y = 0, k = 0}. The collinear libration points--the constant solutions of system (2.6)-- 
belong to a fixed point set; on these solutionsy = k = y = 0. These points are unstable. However, the characteristic 
equation has a pair of pure imaginary roots [5]. Both from Lyapunov's theorem [6] and from Theorem 1 it follows 
that, in the neighbourhood of the collinear libration points adjoining them, one-parameter families of symmetrical 
periodic orbits exist. These orbits in the neighbourhood of one of the libration points were first constructed 
by Euler [7]. Here;, Lyapunov families were found for the first time in one of the fundamental problems of 
mechanics. 

Example 2. The Euler-Poisson equations of motion of a heavy rigid body with one fixed point [8] 
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d n  ,4v. 
A + ( C -  8)qr = P(:'0~2 - YO~'3 ), ~ + (q'Y3 - rY2 ) = 0 

at tlt (2.7) 

(A, B, C), (p, q, r), (Yn,'t2, Y3) 

are reversible with a fixed points set M = {p, q, r, Y1, Y2, I'3: P = q = r = 0}. When Y0 = O, these equations have 
one further fixed points set on which q = 0,1'2 = 0. Ifx0 = L cos cx 1 andz0 = L cos cx3, then, in the lower equilibrium 
position, we havep = q = r = 0,1'1 = -coscq and Y3 = -cos  cx 3. The equations of perturbed motion in the vicinity 
of the equilibrium in question have the form (2.1), where I = 4 and n = 2. Consequently, the characteristic equation 
has a pair of simple zero roots. The remaining roots k are determined from the equation 

( P L  ~ p2L2 2 2  P L  2 PL PL (l'lJ x+  AB c ° s 2 ~ 3 + ' - ~  cos (xl =0 x 2 + c o s  2 ot 3 + - - +  c o s  2 
B C 

where ~. = k 2. It can be seen that this equation, with L ;e 0, has a pair of negative roots. This means that the 
characteristic equation has two pairs of pure imaginary roots. Furthermore, in equations of type (2.1) we have 

I -PzolB PxolB 0 0 [ 
B =  0 0 c o s a  3 cosot I 

and, for L ~ 0, we derive rank B = 2. Therefore (Theorem 1), in the vicinity of the lower equilibrium position in 
the non-resonance case there are two families of small vibrations. In the resonance case, at least one of these families 
is retained. 

Furthermore, it follows from Theorem 1 that a double-parameter family of constant solutions belonging to a 
stationary set exists. The existence of this family is also obvious from the initial equations (2.7). In this family we 
have 

(A-C) rp + P(zo~[I-xo¥3) ffi O, r~l-p~ 3 ffi 0 

Since the geometric integral contains no arbitrary constant, then, unlike the general situation, this is a single- 
parameter family. For each point of this family there is a corresponding rotation of the rigid body with a constant 
angular velocity, to which Lyapunov families of periodic motions adjoin. 

Note that, formally, Lyapunov's theorem [6] is not applicable here (l > n). However, using integrals (the geometric 
integral and the integral of the angular momentum), it is possible to reduce the problem to a Lyapunov system. 
In the following problem, the Lyapunov theorem is essentially inapplicable. 

Example 3. Let us consider a discrete model of an elastic rod loaded with a tracking force ([9, p.105]). The 
mechanical system lies in a horizontal plane and consists of two identical rods of mass m and length 1, connected 
to each other ~/nd to the stationary base by ideal joints and springs of stiffness cl and c2 respectively. The free end 
of the second rod is acted upon by a constant tracking force F directed along the axis of the rod. A rectilinear 
configuration of the system corresponds to the undeformed state of the springs. 

We have a mechanical system with positional forces. This system is reversible [10]. If the positions of the rods 
are determined by the angles of their deviation from the equilibrium state, then the characteristic equation of the 
linearized equations of perturbed motion has the form 

7~. 4 + 6a/(m/2)Z 2 + 36clc2/(m214)=0, affi 2c I + 16c2-5FI 

From Theorem 1 it follows that, when the following inequality is satisfied 

a-2 7~cic2 > 0 

there is always one Lyapunov family of periodic motions. When the condition of non-resonance is satisfied we have 
two families of this kind. Obviously, these families describe small fluctuations of the rods about the equilibrium 
position. 

3. T H E  C A S E  O F  r a n k  B = n - 1 

We will invest igate  the  p r o b l e m  of  the  exis tence o f  L y a p u n o v  famil ies  o f  pe r iod ic  mo t ions  when  one  
o f  the  condi t ions  in T h e o r e m  1 is not  satisfied. The  case when  in a system with I = n, there  is one  fur ther  
pa i r  o f  pu re  imaginary  roo t s  o f  the  form +_ipoo(p ~ ~ )  was cons ide red  in [11, 12]. H e r e  it was a s sumed  
that  r ank  B = n. 

Now, suppose  r ank  B = n - 1 in system (2.1). Then ,  when  the  cond i t ion  r a n k A  = n is satisfied, system 
(2.1), by a non-s ingu la r  l inear  t r ans format ion ,  can be  r e d u c e d  to the  fo rm 
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6" = ~ (~, x, y, p, q),  ~ R t-~ 

x" = y, y" = Yo(x) + YI(~, x, y, p, q) (3.1) 

p" = A . q  + P(~ ,  x, y, p ,  q) 

q" = B . p  + Q(~ ,  x, y, p, q); p, qE R *-t 

where A. and B. are constant square (n - 1)-matrices, and I;, Y0, I"1, P and Q are non-linear terms. 
System (3.1) is reversible and has the fixed points set M. = {~, x , y ,  p, q: y = 0, q = 0}. 

When 

YI (~, 0, 0, p, q) e 0 (3.2) 

the space (~, p, q) is invariant for system (3.1). In this space the motion is described by the system 

~" = ~, (~, 0, 0, p, q) 

p" = A . q  + P(~ ,  0, 0, p, q)  (3.3) 

q" = B , p  + Q(~ ,  0, 0, p, q) 

for which Theorem 1 holds. Therefore, when condition b of this theorem is satisfied, for each pair of pure 
imaginary roots of the characteristic equation there is a corresponding Lyapunov family of periodic motions. 

Let us now assume that condition (3.2) is not satisfied Then, in the non-singular case we have 

n - I  
Yt(O,O,0,p,O)= Y~ csjpspj +o(llpl12), csj = e o n s t  (3.4) 

s,j=i 

We shall introduce a small parameter Ix by the replacement (~, x ,y ,  p, q) --> (Ix~, laX, Ixy, ~tp, Ixq). Then, 
on a Lyapunov f~u~ily caused by a pair of pure imaginary roots _+ioo and adjoining the zero position of 
equilibrium, if such a family exists, we shall obtain 

pj - ascos tot + . . . .  qs = bssin t o t  + . . .  ( a  s ,  b s = const) 

In this case ~, y ~ are at least of the first-order in Ix. Hence, in periodic motion, the variables ~, and x 
are of the same order in IX, and the rate of change of the variable y on intersecting the fixed set M. is 
equal to 

n - I  

y" = IX Y. csjasa j + o(ix) 
s,jffil 

and has the same sign. Obviously, this is impossible in periodic motion (Fig. 1). 

Theorem 2. Suppose that in system (2.1) we have rank A = n and rank B = n - 1. Then, in system 
(2.1) there is no Lyapunov family of periodic motions that adjoins the zero position of equilibrium. 

Note. The condition rank A = n guarantees that system (2.1) can be reduced to the form (3.1), and here Theorem 
2 holds for system (3.1) irrespective of whether the condition A. = n - 1 is satisfied. Therefore, the conditions 
rank A = n and B = n - 1 in Theorem 2 can be replaced by the condition that a pair of zero roots is present with 
a Jordan cell and variable y equal to zero on a fixed set. 

Thus, in the general situation of (3.4), non-satisfaction of condition c in Theorem 1, as opposed 
to condition b [11, 12], is fatal for a Lyapunov family. If system (2.1) contains a small parameter e, 
has a pair of pure imaginary roots __.ito(e), to(0) ~ 0 and, when e = 0, two other roots pass 
through zero by the scenario of non-satisfaction of condition c, then, when e = 0, the Lyapunov family 
disappears. 

An interesting problem arises concerning periodic motions that are caused by a pair of zero roots 
and close to plane periodic motions of the system 

x" =y ,  y" = Yo(X)+Yl(O,x,y,O,O) (3.5) 

We shall assume that 
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Yo(x)= gx m +o(x"), g=cons t  

Then, the function 17 = xy is the Chetayev function for system (3.5) in the case of even m, and, in the 
case of odd m, wheng > 0 [13]. From this it follows that, in the given cases, all solutions of system (3.5) 
from the regionxy > 0 are departing, and therefore there are no periodic solutions. In particular, such 
a situation occurs in the most general case when m = 2. 

Suppose that m = 3. In spite of the degeneracy, this case generally occurs in mechanical problems. 
Assuming that g < 0, w e change to the variables r, 0 according to the formulae 

x = r c o s 8 ,  y = r  2 s in0  

As a result, we obtain a system that is 2re-periodic in 0 

r ' =  r 2 (1+ g .¢~27) sinOcosO+ r3R(r,O) 
1 + sin" 

2 s in2O-g co  s40 2 
e = - r  1 + cos 2 e + r e(r, e) 

(3.6) 

From the second equation it can be seen that, for sufficiently small r, the angle 0 varies 
monotonically along the trajectories. Therefore,  the angle 0 can be chosen as a new independent 
variable, and system (3.6) can be written in the form of a single reversible equation for r, 
describing the motion on a fixed points set. It is well known [14] that all solutions of the equation 
obtained will be 2n-periodic in 0. Hence,  when m = 3 and g < 0, the zero of  system (3.5) will be the 
centre. 

In the presence of an associated system (for the variables ~, p, q), it was not possible to prove the 
existence of  a family of per iodicmotions adjoining zero. 

4. B I F U R C A T I O N  OF L Y A P U N O V  F A M I L I E S  
OF P E R I O D I C  M O T I O N S  

We shall assume that system (2.1) contains a parameter  e, and when e * 0 we have rank B(e) = n 
and rank B(0) = n - 1 .  Then, when the condition rank A(0) = n is satisfied, system (2.1) with e = 0 
reduces to the form (3.1). From (3.1) we also derive a transformed system when e ;e 0 i re  is regarded 
as a local variable corresponding to the equation ~ = 0. Then, introducing, where necessary, a new 
paramete r - -a  function of  e - -we have the system 

~" =-~(e,~,x,y,p,q) ,  ~eR t-" 

x ' = y ,  y ' = e x +  Yo(e,x)+ Yl(c,~,x,y,P,q) 

p" = A.(e)q + P(~.,!~,x,y,p,q) 

q'=B.(e)p+Q(e,~,x,y,p.q); p, q e R  "-j 

(4.1) 

where A.(e) and B.(e) are constant matrices, det B. ;e 0, and the non-linear functions ~,  ]I1, P and Q 
vanish at ~ -- 0, x = y = 0, p = q = 0. Furthermore,  Yl(e, O, x, O, O) =- O. 

Lemma 2. Suppose that 

Yo(e,x) = g(~.)x" +o(x"), g(O)*O 

Then, when m = 2, system (4.1) admits of two (1 - n)-parametric families of equilibrium positions 
belonging to a fixed set. When m = 3 and ~g(0) < 0 there are three such families, but when m = 3 and 
eg(0) > 0 there is only one such family. In all of  these cases, one of the families contains a zero 
equilibrium. 

Proof. Since on the fixed points set M., the functions ~ and P vanish, the problem reduces to the compatibility 
of the system of equations 
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£x + Yo(e,x)+ Yl(£,~,x,O,p,O)=O 
(4.2) 

B,(¢)p + Q(e., ~, x, 0, p, 0) = 0, detB,(~) ~eO 

When ~ = 0, from the second equation of system (4.2) we determine p(£, x) as a non-linear function of x, and 
here p(¢, 0) = 0. We substitute into the first equation. 

We obtain the equation 

f(~,x)= £x + g(0)x a" + o(x'n)+x'no(¢)=O (m=2, 3) 

which has the obvious rootx ° = 0, and also the other roots in Lemma 2. Here, when any of these roots are substituted, 
the partial derivative ,~f/~x ;e 0. Therefore, it follows from the implicit function theorem that, for sufficiently small 

= ~0, system (4.2) has an (1 - n)-parametric family (from ~0) of roots x°(~ °) and x*(~°). 

Note. It follows from the proof that ~0 is of the order ofo(x °) when m = 2, and o[(x°) 3rz] when m = 3. 

In the (x, y) plane these families of equilibrium positions are represented by points. The nature of 
these singular points is shown in Fig. 2 (m = 2) and Fig. 3 (m = 3). Here, from left to right we show 
the cases e < 0, e -'= 0 and £ > 0 respectively, and in the upper (lower) diagrams in Figs. 2 and 3 we 
have g > 0 (g < 0). Note that Fig. 3 also arises [15] when studying a Hamiltonian system. 

Theorem 3. Let the matrices A,(0) and B,(0) in system (4.1) satisfy the conditions of theorem 1 imposed 
on the matrices A and B respectively. Then, for £ # 0, each point of the (l - n)-manifold of equilibrium 
positions shown in Figs 2 and 3 has adjoining Lyapunov families of periodic motions, and here the 

Fig. 2. 

Fig. 3. 
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families for "saddle"-type equilibria are orbitally unstable. Furthermore, Lyapunov families of periodic 
motions that are similar to those shown in Figs 2 and 3, with a frequency close to the number k4]el  
(k = const), adjoin the "centre"-type equilibrium positions. 

Proof. If the matrices A.(0) and B.(0) satisfy the conditions of Theorem 1 imposed on the matrices 
A and B respectively, then, for fixed e ~ 0, the system of linear approximation in (4.1) satisfies all the 
conditions of Theorem 1. This indicates the correctness of the first assertion of Theorem 3. The instability 
of  the Lyapunov motions adjoining "saddle"-type equilibria follows from the instability, in the first 
approximation, for the variables x and y. Here, the departure of the solutions occurs exponentially with 
exponent k4 I e I (k = const). The existence of yet another Lyapunov family adjoining a "centre"-type 
equilibrium can also be deduced from Theorem 1. This family corresponds to a pair of pure imaginary 
roots __.i/c41 e 1, for which, for sufficiently small e, condition b of Theorem 1 is satisfied. 

From Figs 2 and 3, taking Theorems 2 and 3 into account, the scenario of bifurcations of Lyapunov 
families of periodic motions when a pair of roots passes through zero becomes clear. 

5. T H E  E F F E C T  OF A " H O L O N O M I C "  C O N S T R A I N T  

The above investigation was carried out for arbitrary l and n satisfying the condition I f'l n. Otherwise, 
Theorems 1-3 contain assertions that hold when I = n and can be generalized to the case when I > n. 
However, when solving applied problems, in particular in non-holonomic mechanics, we always have 
l N n. Therefore, the question of the "active contribution" of the variable ~ to Lyapunov families of 
periodic motions is of interest. 

We will examine system (3.1) and, initially assuming that rn = 2, we will single out in the function 
]I1 the terms quadratic in x and 

Y, (g ,x )  - gx 2 + xgOts~ s + gl ts j~sgj  (Ots,f~sj = const) 

All equilibrium positions of the system that belong to a fixed points set are determined from the system 
of non-linear equations 

gx 2 + xXas~s  + Xf3sj~s~j + Y.. (t2,x,O, p, O) = 0 

B , p +  Q(~,x,O,p,O) = 0 

(5.1) 

gx 2 + xXCtsgs + Xf3s~gsg~ + IXF(Ix,'~, x)  = 0 (5.2) 

When Ix = 0, Eq. (5.2), with the appropriate choice of the quantities ~1 . . . . .  ~_~, always has simple 
roots, provided all the constants cx~ and 13~j are not simultaneously equal to zero or the conditions as = 
0 (s = 1 . . . . .  l - n) are not satisfied and the quadratic form of ~ is not sign-definite with the sign of 
the numberg. In this case, if all 13,j = 0, then one of the roots is zero. Consequently, with the exception 
of the given cases, system (5.1) allows of an (l -n)-parametric manifold (from ~) of equilibrium positions 
that belong to the fixed points set. Here, the region of permissible values of~ is specified by the condition 
for Eq. (5.2) to be solvable. 

Now let us examine one of the equilibria of the manifold in question and change to its vicinity. Then, 
by virtue of the fact that the equilibrium belongs to the fixed points set, we obtain a reversible 
autonomous system. Theorem 1 can be applied to this system. As a result, we obtain the Lyapunov 
families of periodic motions that were established in Theorem 3. 

A similar situation occurs for m = 3. Only in this case the function Yo(g, x) has the form 

Y. (tL x)  = gx  3 + x~XZs~ s 

and the equation of equilibria (5.1) has one or three families of solutions provided not all ~ts are 
simultaneously equal to zero. When ¢t s = 0 (s = 1 . . . . .  l - n), it is necessary to select 

where Y..(g, x, p, q) is the right-hand side of the equation fo ry  without the function Y.(~, x). 
From the second equation of system (5.1) we determine the non-linear function p(~, x) and substitute 

it into the first equation. Then, after the introduction, by making the replacement (~, x) ~ (IX~, lax), of 
the small parameter Ix, we obtain an equation for determining x 
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r.(~,x) = gx 3 + ~s i~s~ j  

Note that, both for m = 2 and m = 3, it is possible to write new expressions for the function Y.(~, 
x) if all o~ and I~sj are equal to zero. 

Theorem 4. Each point of the manifold of equilibrium positions of system (3.1), with the exception 
of zero equilibrium, defined by the simple root of the equation Y.(~, x) = 0, has an adjoining Lyapunov 
family corresponding to a pair of pure imaginary roots of the subsystem for p, q. Here, for the matrices 
A., B,, the conditions of Theorem 1, formulated for the matrices A and B respectively, should be satisfied. 
Families adjoining a "saddle"-type equilibrium are orbitally unstable, and "centre"-type equilibria have 
one further adjoining Lyapunov family similar to plane motions on (x, y). 

Note. It follows from Theorem 4 that the effect of a "non-hoionomic constraint" when condition c in Theorem 
1 is not satisfied, i.e. when there is a pair of zero roots with a Jordan cell with the condition rank B = n - 1, consists 
of the "distancing" of these roots from zero. Lyapunov families behave in the same way as in the case of a pair of 
roots close to zero wiith a Jordan cell. 

6. A HEAVY,  H O M O G E N E O U S  E L L I P S O I D  ON AN A B S O L U T E L Y  
R O U G H  P L A N E .  P E R I O D I C  M O T I O N S  C L O S E  TO P E R M A N E N T  

R O T A T I O N S  A B O U T  T H E  V E R T I C A L  

The dynamics of a heavy, homogeneous ellipsoid on an absolutely rough horizontal plane is described 
by the equations 

a 2 2 2 2 - 2  2 2 - 2  
x" "~yO~ 3 a a - c  2 0 - a  2 c - o  . . . .  + ~ x yc% + ~ xyzoh = x c2 zoo2 + a2c2 x zo~ 

[ A + m(y 2 + z 2 )](0~ - mxyo~" 2 - mxzo~" 3 = 

= (B ' -  C)to2to 3 + (X  - y(o 3 + ztz 2)(tonx + (o2y + oa3z)- 

• c 2 _ b 2 
- m ~  l ( xx" + yy" + zz ) - rag ~ xyz5 

5 = ( x 2 1 a 4  +y21b4  + z 2 1 c 4 ) - ~  , A = m ( b 2  +c2)15,  B = m ( c 2  +a2)15 ,  

C =  m(a 2 +b2) /5  

(x~y,z), (0~,,0~2,¢%), (A,B,C) ,  (a,b,c)  

(6.1) 

where m is the mass of the ellipsoid, a, b and c are its semi-axes, A, B and C are the principal central 
moments of inertia, x, y, z are the coordinates of the point of contact of the ellipsoid and plane in a 
moving system of coordinates with the axes directed along the axes of the ellipsoid, to1, to2 and (03 are 
projections of the instantaneous angular velocity vector in the same system and ~ is the distance from 
the centre of masses to the point of contact. 

System (6.1) is reversible with three fixed points sets, on each of which one of the pairs of variables 
(x, COl), 0', to2), (z, '~3) is equal to zero. Furthermore, as always for a heavy, rigid body on a rough plane, 
there is the fixed points set {x, y, z, 0)1, to2, to3:to1 = 0, ¢02 = 0, co 3 = 0}. 

We will change 1:0 a dimensionless form of the equations, introducing new variables, parameters and 
the time x by the formulae 

x = a x l ,  y = b y l ,  z = c z l ,  ¢o i =cop, co 2 =o~q, (%.=o~r, "~=o)t 

c t = a l c ,  [~=blc ,  y=g l ( (o2c ) ,  A1=([$2+1)15, Bl=( l+o t2 ) /5 ,  

Ci ---(ct 2 +132)/5 

where co is a certain constant having the dimension of angular velocity. Then the system obtained has 
the particular soluLtion 

x, =Yl =0, Zl =-1,  p--q--O, r=O)o(const) (6.2) 
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corresponding to permanent rotation abut the vertical with angular velocity e0o)0. Assuming COo ~ 0, it 
is always sufficient to examine the case too --- 1. For this, on changing to a new time x, we shall assume 
an angular velocityin permanent rotation equal to co. 

System (6.1) allows of two integrals--the energy integral and the geometric integral. In dimension- 
less form, these integrals have the form 

(~yl r -  Zlq) 2 + ( z i p -  0lxlr) 2 + (0txlq- I~ylp) 2 + AlP 2 + l~q 2 + CI r2 + 

i" 2 2 ~,-~J (6.3) 
Xl Yl 2 + 2 y ~ - + ~  + z, J 2 h = ~----~c = 2ht (const) 

where h is the energy constant. 
We will compose the equations of perturbed motion in the vicinity of the particular solution (6.2). 

Then, in the reversible system of the form (2.1) obtained, we have l -- 4 and n = 2. Consequently, there 
is a two-parameter family of equilibrium positions that belongs to the fixed points set. However, in the 
problem in question, the geometric integral contains no arbitrary constant. Therefore, the 
dimensionality of the manifold of equilibria is equal to unity. 

We will eliminate the variables Zl and r by means of integrals (6.3) and examine only isoenergetic 
motions in which the value of the energy integral is equal to its value on permanent rotation. As a result, 
to describe such motions in the variablesxl,yl,p and q, we obtain a reversible system of the form (2.1) 
with l = n = 2 and matrices 

I al~ a [ 
A = 51132 - a 2 + V(132 - 1)] 6 - 5a 2 - I~ 2 

1~(6+1~ 2) 6+1~ 2 

H -°1 B ;  5[a 2 _.132 + y ( a  2 - l ) ]  _ 6 - a  2 -5132 

~(6  + Ot 2 ) 6+0t 2 

where, in the general case, rank A = rank B = 2. 
The characteristic equation 

~ 2 ,  ~.'fl) = 0 

S~4 +GX2 + F =  0 

S = (6+a2)(6+1~ 2 ) 

G = S + 36(1 - a 2)(1 - 132) - 5y[(6 + ot 2)(1 - 132) + (4 g 132)(1 - a 2 )] 
F = (1 - o r  2 ) ( I  - 1~2)(6 + ST) 2 

has two pairs of pure imaginary roots 

~ - G - 4 G 2 - 4 S F ]  )~, ~ -G + ~G 2 - 4SF,]~ 

=L J 
if 

G > 2 ~  (6.4) 

Condition (6.4) is satisfied identically if the rotation occurs about the least axis (a  > 1, 13 > 1), and, 
in the case of rotation about the greatest axis, if the angular velocity is sufficiently great [16] 

1 r (6 + a2)(6 + 2) - 6 a / ( l -  Or2)(1-132 ) 12 
y < -  

J 
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It follows from Theorem 1 that in these cases there is always a single Lyapunov family of periodic 
motions, adjoining permanent rotation and corresponding to a pair of roots ~,1- When k2 ~ ~2~ (k 
N), again there is a second family corresponding to a pair of roots k2. 

When rotation occurs about the middle axis (or < 1, I] > 1) we have F U 0, and the characteristic 
equation contains a pair of pure imaginary roots ~,1. A family of Lyapunov periodic motions that adjoins 
permanent rotation again corresponds to these roots (Theorem 1). 

We will now assume that the ellipsoid of rotation performs permanent rotations about the axis of 
the ellipsoid, which is not an axis of symmetry (tx = 1). In this case, the matrices A and B will take the 
form 

n I/l  

II ~6  + I~) 2 6 + - - ~  ~ ~ 1) 

and, when I] ~ 0 and [3 ~ 1, we obtain rank A = 2 and rank B = 1. Hence, the characteristic equation 
has a pair of zero roots with one group of solutions and a pair of pure imaginary roots --.ito. [16] 

to,2 = 1 - 5y(l - 132 )/(6 + I~ 2) 

if 

5y(1 - ~2 ) < (6 + I] 2) (6.5) 

Condition (6.5) is satisfied for any angular velocity if the axis of symmetry is the greatest axis, otherwise 
at a fairly high angular velocity. 

The equations of perturbed motion contain no second-order terms in the perturbations. Therefore, 
Theorem 2 cannot be used, and the question of the existence of the Lyapunov family in the case of 
(6.5) remains open. Note that, here, the interesting problem arises of the existence of a Lyapunov family 
in a degenerate but fairly typical case for mechanical systems. 

In the case examined, the equations of perturbed motion reduce to the form (3.1). Here, in the function 
Yo(x) we have m = 3, and the coefficient g = 0. Lemma 2 cannot be used, and it is impossible to establish 
the existence of constant rotations in which the axis of the ellipsoid makes a non-zero angle with the 
vertical. In fact, there are no such rotations [18]. 

The conclusions obtained are summarized by the following theorem. 

Theorem 5. Suppose a heavy, homogeneous ellipsoid performs, on an absolutely rough plane, 
permanent rotations about one of the axes (with semi-axis c) coinciding with the vertical, the angular 
velocity satisfying the condition (o2 ~ 5g/(6c). Then, when rotation occurs about the smallest or middle 
axis or the greatest axis, but with a fairly high angular velocity to > to*, such rotation always has a 
Lyapunov family of periodic motions. In the case of rotation about the smallest axis or the greatest axis 
with to > to*, we have two such families, provided the non-resonance condition is satisfied. 
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